Shortening of the ulna for impingment A comparative analysis of two techniques

G. Sennwald, D. Della Santa Hand Unit, medical school University of Geneva

- Ulnar impaction: Etiology
 - Overlong ulna (primary or secondary),
 - -TFC tears (pistoning)
 - Rheumatoid arthritis
 - Madelung

Cave: Impaction processus styloideus

- Ulnar impaction: excluded from the study
 - Overlong ulna (primary or secondary),
 - -TFC tears (pistoning)
 - Rheumatoid arthritis
 - Madelung

Cave: Impaction processus styloideus

• Ulnar impaction: alternative

- Shortening of the ulna
- -TFC Debridement
- Section of distal ulna (Wafer).

• Techniques: Comtet's approach for Kienböck (lengthening)

- Intraarticular: at the level of the ulnar head (epiphysis, spongious bone)
- Shaft: at the level of the diaphysis (cortical bone)

• Techniques: Desanfans' Technique for ulna lengthening.

- Intraarticular: at the level of the ulnar head (epiphysis, spongious bone)
- Shaft: at the level of the diaphysis (cortical bone)

• Techniques: Desanfans' Technique for ulna lengthening.

• Techniques: Desanfans' Technique for ulna lengthening.

Healing at 6 months

• Patients:

Retrospective study		
Observation period	1.1.1982	31.12.98
Follow-up (month)	55 (median)	(15-144)
Delay to Osteotomy (month)	21 (median)	(1 - 198)

Both groups similar

• Patients (n: 36):

Etiology

All but two, traumatic

Radius malunion 12

Pain

All, at the distal RU

Instability/Laxity

obvious 21 /

RU

Absent: 15

• Patients & methods (n: 36):

$\boldsymbol{\alpha}$	C	•
Statistics	tor	comparison
Statistics	101	comparison

Chi-square Cross tabulation

Mann-Whitney Two samples nonparametric

Manova Influencial variables

• Patients & Methods, scoring (max 110)

Pain: none (20) / occasional (15) / moderate (10) / severe (5)

Function: back to all (20), discomfort (15), limitation (10), day living (05)

Motion: equal (20), reduced (15) day living (5), insufficient (2.5)

Objective score: redundant

Strength: equal (20), 75% (7.5), 50% (5), less (2.5)

Union: healed (10), delay > 6 month (5); non union (2.5)

Ulnar variance: 0 to -2mm (10); + 1mm or < -2 (5); >+2 or < 3mm (2.5)

Complication: none (10) one or more (5)

• Patients:

	N	Women	Men
Both groups	36	14	22
Head	19	6	13
Shaft	17	8	9
Age	Median		
Both groups	43.9	52.8	37.6
Head	36.8	44.5	<i>36.1</i>
Shaft	45.3	56.1	43.5

No statistical differences

• Results: a. occupation = similar

Occupation	Head	Shaft	total
Light	9	10	19
medium	6	3	9
heavy	4	4	8
Total	19	17	36

• Results: b. sex = similar

Occupation	women	men	total
Light	9	10	19
medium	3	6	9
heavy	2	6	8
Total	14	22	36

• Results: c1. motion = Flex-Ext, similar

rom	head	shaft	total
<= 70	5	2	7
70 - 139	11	11	22
140 – 180	3	4	7
Total	19	17	36

• Results: c2. motion = Ab-Ad, similar

rom	head	shaft	total
<= 60°	13	10	23
Over 60°	6	7	13
Total	19	17	36

• Results: c3. motion = Pro-Supination

rom	head	shaft	total
< 120°	1	1	2
120 – 149°	5	4	9
Over 150	10	7	17
Total	16	12	36

• Results: d. strength = similar

Kg	head	shaft	total
Up to 30	10	12	22
30 to 60	7	5	12
Over 60	2	0	2
Total	19	17	36

• Results: e. painscale, similar

Painscale	Head	Shaft	Total
Up to 3	11	9	20
3 to 6	5	5	10
Over 6	3	3	6
Total	19	17	36

• Results: e. painscale, without salvage op

Painscale	Head	Shaft	Total
Up to 3	11	8	19
3 to 6	5	2	7
Over 6	0	2	2
Total	16	12	28

• Results: scoring (max 110)

score	Head	Shaft	Total (36)
Over 85	5	5	10
70 to 85	11	6	17
55 to 70	0	3	3
Up to 55	3	3	6
Cl	ni-square betwo	een both group	s: ns

• Results: f. score (without salvage,

significantly better: p = 0.01)

score	Head (16)	Shaft (12)	Total (28)
Over 85	5	5	10
70 to 85	11	3	14
55 to 70	0	3	3
Up to 55	0	1	1

Chi-square between both groups: 0.04

Shortening of the ulna

Both groups (excellent, good, fair, poor)

Rank	N	Age	Pain	FE	AB-D	Pr_Sup	Strength
1	10	40.2	0	145	67.5	160	40.5
2	17	45.	3	115	50	150	28
3	3	45.7	6	100	45	155	24
4	6	47.4	7	80	50	145	14.5

Shortening of the ulna

- Manova (factors):
- FE, p > 0.002
- Strength, p > 0.004
- Pain, p > 0.001

Manova

Shortening of the ulna

Osteotomy	All	Head	Shaft
FE	P < 0.002	P < 0.006	P > 0.08
Strength	P > 0.004	P > 0.06	P < 0.008
Pain	P < 0.001	P < 0.002	P < 0.001

• Patients own evaluation correlated well with the scoring system.

Gamma = 0.97

CONCLUSIONS

- Both techniques give similar results,
- head OT might be better
- Ranking depends on
 - Mainly on pain in both groups &
 - on flexion extension after osteotomy at the level of the head
 - on strength after shaft osteotomy

- Both techniques
 - are debatable as salvage procedures
 - need exact pre-operative diagnostic
 - allow primary bone healing (no pseudarthrosis)
 - No proof that shaft shortening stabilizes the distal radio-ulnar joint

• Both technique asnaft OT stabilizes the ustal radio-ulnar joint